New Products Introduction

KYOCERA Asia Pacific Cutting Tool div.

FY18 New Products

FY18 New Products

Milling tools Line-up expansion

Cermet for Milling

TN620M

BDGT type Insert for MEC

Diamond KPD001/KPD230

CeramTec Finish Mill for Cast Iron

Aluminum Holder

PPCM

■ Turning tools Line-up expansion

PVD Turning

Threading tools Line-up expansion

TQ breaker Line-up Expansion

TF Series New Grade Expansion

■ Role of Drilling Holder

■ DRV Core

<ø20-3D holder cross section>

The holder core thickness of DRV increase 20% to conventional so that deflection will be suppressed.
DRV achieves stable machining with quite little dia. differences.

DRV achieved stable machined diameter, compared to competitor H by increasing the holder rigidity.

New CVD for drilling as outer insert.

High efficiency machining with high cutting speed

Outer & inner insert achieve superior chip control performance by optimization of both inserts.

Edge location & cutting speed

<Bottom view of indexable drill>

Cutting speed changes by dia. point from 0 to 100%.

⇒The efficiency can be increased by installing CVD insert as outer edge

CA520D is developed as new CVD grade for drilling.

This grade achieves longer tool life by superior wear resistance performance,

and achieves high speed machining due to high heat resistance.

Cutting force comparison

- Cutting Conditions -Work Piece :S50C, ø20-3D Vc=200m/min, f=0.12mm/rev GM breaker

DRV is designed to machine in Low resistance. Even in 6D Holder achieves stable machining.

■ Breaker Selection **XM,GH** : 05,06,07 size avl. P(Carbon steel · Alloy steel) M (SUS) K (Cast iron) Low Carbon steel • Mid~Hi Carbon steel Easy to long steel (S45C, SCM440) (SCM415, SS400) Non Heat Tough Low Stable or Heated treatment machining resistance Interruption Continuous Chipping Low Rigidly Chip Tangling Tough E. Tough E. Soft steel Soft steel SM SM GM GM GH GH XM XM breaker breaker breaker breaker breaker breaker breaker breaker

■ XM breaker for Soft steel

<XM breaker's Rake angle>

Unique Designed breaker. Internal and External breaker length gradually change.

XM breaker can have stable chip control for Soft and Easy to have long chip steel material. Target: SS400, Soft steel, Customer with Chip control trouble. (05, 06, 07 type Insert avl.)

- 1. Features & Design Structure
- 2. Performance of MFAH

Concept

Achievement of Burr-Less, Low Resistance, High Efficiency Machining, Wide Range of Product Depending on Cutting Applications.

Features

✓ Achieved Burr-Less Cutting

Large actual rake angle, Double edge insert

Achieved High Speed Machining, High-Efficiency Machining

Applied an unique insert fly loss prevention mechanism Achieved high efficiency cutting by multi-blade and low resistance design

Easy Blade Run-out Adjustment Mechanism

Applied an usable run-out adjustment mechanism for easy mounting and easy operation

✓ Wide Range of Products

Wide range of products including multi-blade type as compared with conventional products Lightweight & high rigidity cutter due to combination with aluminum alloy and steel alloy Abundant selection of PDC inserts in accordance with various applications

Easy Operation ~ Mounting of insert, Edge run-out adjustment ~

Point 1 Simple Installation

➤ Easy positioning by guide pin

(1) Loosen clampers(2) Insert guide pin

%Remarks : Insert cannot be mounted from the peripheral side

Point 2 Easily Blade Run-Out Adjustment

 \succ Adjustable from the front side as well as the peripheral side

Operable from front side **** MFAH Unique Technology** ** Conventional Type : from the peripheral side

Anti-Fly Loss Mechanism

Point 1 Fly loss prevention by wedge shape

 \succ Insert movement by centrifugal force is suppressed by the shape binding towards the peripheral direction

Point 2 Fly loss prevention by guide pin

> Structure that insert would not be pulled out to the peripheral direction by the guide pin.

■MFAH Product Lineup ~Cutter~

Standard Blade

Multi-Tool

Steel

Allov

Aluminum

Alloy

■MFAH Product line-up ~Insert~

■MFAH Performance Unique Selling Point

Reference: Blade Type (MFAL)

		Conventional To	New Tool					
Competitors	Competitor B-1	Competitor H	Competitor Competitor B-2 C					
Туре	Insert Type	pe Insert Type Blade Type		Insert Type	Insert Type			
MFAH	 Not improving of cutting flu Better conditional and low resisted of the second se	g the efficiency (du te and high resista ions due to more n stivity J Cost on by insert type +	 High load due to multi-flutes Achieved low resistivity and stable machining 					
Auvantage	 Large burr (More operations in order to remove burr) Improved quality by burr less design and reduction of operations 							
	 Take much time to adjust the edge height Improved usability due to unique mechanism 							

Performance of **MFAH**

Point 1 Suppression of burr and edge chip

Suppression burr and edge chip by big actual rake angle
 + doubles edge specification.

%Comparison with competitor's and conventional tools

ADC12 φ63-6Τ	Finish Cutting Conditions (burr is easy to come out) Vc = 2,000mm/min, ap = 0.5mm, fz = 0.05mm/t	Rough Cutting Conditions (edge chip is easy to occur) Vc = 2,000mm/min, ap = 1.5mm, fz = 0.15mm/t
MFAH Type ENETxx-G Double Edge		
Competitor B C0.5		
Competitor H C0.25		and the second second
Competitor Z C0.2		the subscription

Performance of **MFAH**

Point 1 Suppression of Burr and Edge Chip

Suppress the burr and edge chip

by big actual rake angle+ doubles edge specification.

%Comparison with competitor's tools

ADC12 φ80-10Τ	Finish Cutting Conditions(burr is easy to come out) Vc = 2,500mm/min, ap = 0.5mm, fz = 0.05mm/t	Rough Cutting Connditions (Edge Chip is easy to occur) Vc = 2,500mm/min, ap = 1.5mm, fz = 0.15mm/t
Type MFAH ENETxx-G Double edge		
Competitor B Double Edge		
Competitor C R0.8		

MFAH enables to minimize the burr and edge chip in comparison with competitors' latest tools. % Superior to the competitor B, by having a large actual rake angle.

Performance of **MFAH**

Point 2 Low Resistance Design

Low resistance in accordance with the companies new tools
Achieved high efficiency cutting by multi flute cutting edge

Work:ADC12Cutter:MFAH080RS-10TInsert: ENET0905PAER-G(KPD001)Vc:2,500 m/minAe:55 mmCoolant:Wet

 Inish Cutting Condition
 BT50 M/C

 Soutput 30 kw or less cutting areas

 Mition
 Wider Machining Range

Resistance reduction for approx 10% in Finish Cutting Condition and more than 20% in Rough Cutting Condition

High Efficiency 88° cutter *MFSN88* High Efficiency 66° cutter *MFPN66*

MFPN66

High Efficiency 88° Cutter MFSN88

Product Design & Concept

Product Features

Feature 1: Low cutting force design

Cutting conditions

Workpiece material: SCM440 Cutter dia.: 100mm Vc=200m/min, fz= 0.2mm/t, ap x ae = 4x50mm

Feature 2: Superior fracture resistance

High Efficiency 88° Cutter MFSN88

Line up

Insert

Description	Grade
SNMU130508EN-GM	PR1510, PR1525, PR1535, TN620M
SNMU130508EN-SM	PR1510, PR1525, PR1535
SNMU130508EN-GH	PR1510, PR1525, PR1535

Hold	er									(Unit	: mm)
Description				Dia.	N of flute		Description			Dia.	N of flute
	MFSN 880		88050R-4T-M-G	50	4		ļ	- MFS	N 88080R-6T-G	80	6
	s pitch Cross pitch		88063R-5T-M-G	63	5		Dito		88100R-7T-G	100	7
be			88080R-6T-M-G	80	6	e l			88125R-9T-G	125	9
			88100R-7T-M-G	100	7	t p	5 2	5	88160R-11T-G	160	11
			88125R-9T-M-G	125	9	- Lo	6	MFSN	N 88080R-9T-G	80	9
c t			88160R-11T-M-G	160	11		ros		88100R-11T-G	100	11
etric		MFSN	88050R-5T-M-G	50	5		U X	pit	88125R-13T-G	125	13
Μe			88063R-7T-M-G	63	7				88160R-15T-G	160	15
			88080R-9T-M-G	80	9		Description			N of	
	Sros		88100R-11T-M-G	100	11				escription	Dia.	flute
	ж		88125R-13T-M-G	125	13			MFSN	88032R-S32-2T-G	32	2
			88160R-15T-M-G	160	15		IVI		88040R-S32-3T-G	40	3

High Efficiency 66° cutter *MFPN66*

Product Design & Concept

Product Features

Feature 1: Unique twisted edge design

Cutting conditions

Workpiece material: SCM440 Cutter Dia.: 100mm *Vc=200m/min,* fz= 0.2mm/t, ap x ae= 4x50mm

Feature 2: Longer tool life with MEGACOAT NANO

Cutting conditions

Workpiece material: SKD11 Cutter Dia.: 100 mm Vc=150m/min, fz = 0.15mm/t, ap x ae= 2x40mm

Line up

Insert

Description	Grade
PNMU0905XNER-GM	PR1510, PR1525, PR1535 TN620M
PNMU0905XNER-SM	PR1510, PR1525, PR1535
PNMU0905XNER-GH	PR1510, PR1525, PR1535

Holder

(Unit: mm)

		Dia.	N of		
			•		Tiute
		MFPN	66050R-4T-M-G	50	4
	tch	Cross pitch	66063R-5T-M-G	63	5
	pit		66080R-6T-M-G	80	6
Metric type	SSC		66100R-7T-M-G	100	7
	pitch Cro		66125R-9T-M-G	125	9
			66160R-11T-M-G	160	11
		MFPN	66050R-5T-M-G	50	5
		Cross pito	66063R-7T-M-G	63	7
	SS		66080R-9T-M-G	80	9
) Ö		66100R-11T-M-G	100	11
			66125R-13T-M-G	125	13
	ш́		66160R-15T-M-G	160	15

Description				Dia	N of	
Description					Dia.	flute
		MFF	PN	66080R-6T-G	80	6
Inch type	SS	Cross		66100R-7T-G	100	7
	U U U			66125R-9T-G	125	9
				66160R-11T-G	160	11
	SS	MFF	PN	66080R-9T-G	80	9
	ö			66100R-11T-G	100	11
				66125R-13T-G	125	13
	ш	Ω		66160R-15T-G	160	15
					Die	N of
IVIODEI					Dia.	flute
Е	E MFPN 66032R-S32-2T-G		32	2		
Μ			66	040R-S32-3T-G	40	3

Differences from *MFWN90* & *MFPN45*

MFSN88 appeal point

The performance is equal to MFWN90 type with better cost efficient (8 cutting edges).

*MFSN88 cannot cover 90° shouldering & plunging machining.

MFWN90

MFPN appeal point

Cutting forces are equal to MFPN45 type, and radial force is 40% lower than MFPN45 type.

*Suitable in small work piece or low rigidity clamping, lower price than PNMU12 type insert.

MFPN45

Summary of Face Milling Cutter

(1) MFPN45/MFWN90: for large d.o.c & MFPN66/MFSN88 : for small d.o.c(2) MFPN66/MFSN88 in case smaller dia. is required, Line-up min. ø32
Cermet for Milling TN620M

《 Features 》

- ①Designed for Milling application.
 - Excellent fracture resistance with surface-hardened layer using gradient composition technology
 - → Excellent surface finish even in S50C, SS400, etc.
- ②Super Micro-Grain Thought Cermet
 - → Provide Stable machining, Long tool life with good surface finish.

TN620M Structure

Inner structure

Grade Specification

Grade	Gravity	Hardness (Hv)	Fracture Toughness (MPa ∙ m ^{1/2})	Transverse Strength (MPa)
TN620M	6.9	1,550	9.0	2,500
TN100M	6.7	1,520	10.5	1,860

Machining Performance **TN620**

Quality Finish Surface (Work piece brightness)

Machining distance	TN620M	TN620M PR1525	
0.26 m			
2.34 m			
8.84 m			

Cutting condition

Vc=250 m/min, ap=1.0 mm, fz=0.1 mm/t, n=637 min⁻¹, Z=7(TN620M), DRY, SS400, Kyocera :MFPN45125R-7T-M, PNEU1205ANER-GL (TN620M,PR1525)

Excellent Surface finish with brightness

Finish Surface comparison (Surface Roughness)

Cutting condition

Vc=250 m/min, ap=1.0 mm, fz=0.1 mm/t, n=637 min⁻¹, Z=7(TN620M), DRY, SS400 Kyocera : MFPN45125R-7T-M, PNEU1205ANER-GL (TN620M,PR1525),

Stable Surface roughness

Frank wear comparison

Cutting condition

Vc=230 m/min, ap=1.0 mm, ae=110 mm, fz=0.10 mm/t, n=586 min⁻¹, Z=1, DRY, SCM440, Kyocera : MFPN45125R-7T-M, PNEU1205ANER-GL (TN620M,PR1525)

Provide Stable machining and Long tool life.

Line-up of **TN620M**

♦ Line-up

Milling type	Description	TN620M	TN100M
	PNEU1205ANEL-GL	•	
	PNEU1205ANER-GL	•	
MFPN	PNEU1205ANER-W	•	•
	PNMU1205ANEL-GM	•	
	PNMU1205ANER-GM	•	
	WNEU080608EN-GL	•	
MFWN	WNMU080604EN-GM	•	
	WNMU080608EN-GM	•	

Available in MFPN/MFWN series

TN620M area MAP (PNMU/PNEU)

Machining Surface comparison

TN620M

Brightness O

PR1525

Brightness \triangle

Cutting condition Vc=200 m/min, n=509 min⁻¹, ap=1.5 mm, ae=110 mm, fz=0.08 mm/t, Z=7, DRY, S50C, Center cutting, MFPN45125R-7T-M, PNMU1205ANER-GM

TN620M Application MAP(WNMU/WNEU)

Cutting condition Vc=200 m/min, n=509 min⁻¹ ae=110 mm, Z=6, DRY, S50C, Center cutting MFWN90125R-6T-M, WNEU080608EN-GL, WNMU080608EN-GM

Machining Surface comparison

TN620M

PR1525

Brightness ©

Cloudy ×

Machined Work piece surface

Cutting condition

Vc=212 m/min, ap=1.0 mm, fz=0.11 mm/t, Z=6, DRY, S45C MFPN45100R-6T-M, PNEU1205ANER-GL

- PR1525 has Cloudiness in Work piece
- TN620M has Brightness excellent finish surface

Roughing end-mill for high efficiency in difficult materials **4/5/6RFH**

Overview

- For roughing in such as stainless steel and titanium-alloy. Improve efficiency in deep machining or grooving. Applicable grooving 2 × D in titanium alloy.
- Superior fracture resistance due to special radius design of cutting edge.
 Using coolant achieves deep grooving with multi-edge specification.

Application

Recommend of use

- To improve roughing efficiency or reduce machining time.
- To decrease cutting force due to machine low rigidity.
- To cut deep roughing at one pass
- To improve chip control performance

Work piece material: Titanium alloy, Stainless steel etc.

Design and features of **RFH**

1. Design for high-efficient machining

Coolant hole

Central coolant hole delivers coolant effectively enhancing chip removal when pocketing or slotting

Radius gashes

Easy to flow internal coolant and smooth evacuation.

Line up large diameter with multi-edge

Large diameter type keeps efficiency in slotting.

2. Composite radius edge restrains fracture

- External cutting edge have multiple R to reduce stress concentration.
- Easy to bite to work piece than nick type and achieve stable machining.

Design of comp.'s & Damage condition.

Test tool: ①6RFH160 ②Competitor G Machining dia. Φ16 / **SUS304** / shouldering / Wet Cutting condition : n=3,500min-1 Vf=840mm/min,ap × ae=5 × 4.8mm

Cutting length	4.2m	8.4m	12.6m	21.2m
KYOCERA 6RFH160				Cut ting time 25min
Comp. G			-	-

Suppress wearing progress with composition radius design of external cutting edge. Achieve more 2.5 times tool life than competitor's product.

Test tool: ① 6RFH160 ②Competitor G Machining dia. Φ16 / **Ti-6AI-4V** / Slot Mill / Wet Cutting condition: n=1,200min-1 Vf=176mm/min, ap=32 mm

Only 1 pass in grooving 2 × D depth

Cutting edge status after 900 mm machining

- -Comp. G's tool occurred breakage from immediately beginning.
- -KYOCERA's has almost no damage with less chattering ,and continue to cut.

In $ap=2 \times D$ depth, coolant effects excellent chip evacuation performance.

Test tool: (1)5RFH100 (2)Competitor C (3)Competitor G Machining dia. Φ 10 / SUS304 / **Slant machining + Slotting** (cutting length: 200mm) n = 3,200min-1 Vf = 310mm/min, ap = 10mm, raked angle 5 °

Work piece status after machining

KYOCERA 5RFH100	5 cutting edge, with thru coolant, Fine machining surface. Less chattering vibration.
Comp. C	4 cutting edge, no thru coolant. Breakage by chip jammed
Comp. G	4 cutting edge, no thru coolant. Able to cut with chatterring.

Fine machining surface by coolant hole and multi-edge. Apply from roughing to semi-finishing.

Test tool: ① KYOCERA 5RFH100(with coolant hole) ② Comp. N(no coolant hole) Machining dia. Φ10 / **SUS304** / Slotting (cutting length: 50mm/pass) / Wet Cutting condition: n=2,550min-1 Vf=336mm/min, ap=20 mm

Work piece status after machining

Kyocera	Possible to continue machining
(with OH)	Grooving 2 xD is also stable.
Comp. N (no OH)	Chip welding on the wall. Large cutting resistance. Rough machining surface.

Status of damage to tools

Line-up

Medium cutting edge length type(from 2 to 2.5 × D cutting edge length)

Model	Cutting dia.	Cutting edge length	Shank dia.	Overall length	Number of cutting	Appearance
4RFH060-150	6	15	6	60	4	
4RFH080-200	8	20	8	70	4	
5RFH100-250	10	25	10	80	5	
5RFH120-260	12	26	12	100	5	
6RFH160-350	16	35	16	110	6	
6RFH200-450	20	45	20	125	6	

Long cutting edge length type(5 × D cutting edge length)

Model	Cutting edge dia.	Cutting edge length	Shank dia.	Overall length	Number of cutting edge	Appearance
4RFH060-300	6	30	6	80	4	
4RFH080-400	8	40	8	100	4	
5RFH100-500	10	50	10	110	5	
5RFH120-600	12	60	12	130	5	A. TITTT
6RFH160-800	16	80	16	160	6	
6RFH200-1000	20	100	20	180	6	

For Super Heat-Resistant Alloy SQ/SX Chipbreaker

New Chipbreaker Line up

Unique axial face design reduces cutting edge temperature.
 Optimize design through simulation technology.

ISO-C type dimension

Effects of SX Chipbreaker

- Decrease the cutting edge temperature \Rightarrow Tools life improvement.
- Negative lead angle \Rightarrow Prevent burr and secure enough depth of cut.
- Radial force reduction \Rightarrow prevent chattering, improve productivity.

ISO-C type holder
 installation is possible
 Single side Handed type

- Single side, Handed type

Improve productivity for roughing super-heat-resistant alloy.

(1) Decrease the cutting edge temperature

SX Chipbreaker

Conventional Chipbreaker

Ni based-heat resistance alloy, Vc = 40m/min, aps = 2.0mm, f = 0.25mm/rev Cutting edge temperature comparison (simulation)

Unique cutting edge design and axial face reduce cutting edge temperature. \Rightarrow Improve tool life and machining efficiency.

(2) Burr Prevention

SX chipbreaker

ap 1

Conventional chipbreaker

Ni based-heat resistance alloy, Vc = 40m/min, aps = 2.0mm, f = 0.25mm/rev Burr occurrence after 9.4min machining

Burr is prevented by new SX chipbreaker during deep machining. \Rightarrow Less notching by new SX, Improve productivity by large depth of cut.

Special edge design & inclination cutting edge realize low cutting force (radial force) ⇒ Prevent chattering, improve productivity.

■SX Chipbreaker evaluation data (Vc=40m/min)

Work: Incone(r) I718(material equivalent) AM S 5663, Holder: DCLNL2525 M-12 Insert: CNMX1204XL-SX, CNMG120412, Conditions: Vc = 40m/min, aps = 2.0mm, f = 0.25mm/rev

SX chipbreaker reduces notching and improves tool life

SX Chipbreaker evaluation data(vc=80m/min)

Work: Inconel(r) 718(material equivalent) AM S 5663, Holder: DCLNL2525 M-12(KC) Insert: CNMM1204XL-SX, CNMG120412, Conditions: Vc = 80m/min, aps = 2.0mm, f = 0.25mm/rev

Keeping high performance even in high speed machining range.

Comparison with SX chipbreaker and other insert shape

 (2) Small amount of un-machined part Un-machined part is smaller than S type
 *Comparison between SX and S type in 12 sizes

Comparison with C type and D type

(1) Long tool life
 Prevents burr by lead angle 60°
 Less notching and longer tool life

*Low cutting force and long tool life. *Improvement of productivity proposal is possible.

⇔ 2.9

■Caution of using SX Chipbreaker

- 1 Center of edge height
 - Cutting edge is slanting.
 - Osection of insert on the right figure
 - is center of edge height .
- ② Depth of cut recommendation

Good machining performance is demonstrated extremely during depth of cut is under 60° lead angle.

*Depth of cut recommendation is during depth of cut is under 60° lead angle. However, larger depth of cut than 60° lead angle is possible.

Description	Depth of cut recommendation OD (mm)	Maximum depth of cut recommendation FACE (mm)
CNMM1204XR/L-SX	2.0(0.5-4.0)	2.0
CNMM1606XR/L-SX	2.5(0.5-4.5)	2.0
CNMM1906XR/L-SX	3.0(0.5-5.0)	2.5

■Caution of using SX Chipbreaker

③ Applicable tool holders

Installable on ISO-C type holder is possible, but interference happens because cutting edge goes backward. Following measures are necessary to avoid interference.

- (1) For Kyocera tool holders
 - -Replacement SX insert sheet with standard insert shim is necessary
 - * Not necessary additional grind off tool holder
- (2) For competitor tool holders
 - -Additional grind off toolholder and insert sheet is necessary.
 - Please grind off tool holder according to inserts retractions quantity.
 - * Kyocera-SX insert sheet is not compatible with competitors' insert shim.

Insert retractions quantity (In case of R08) 12 sizes: 1.8mm 16 sizes: 2.2mm 19 sizes: 2.5mm

■Caution of using SX Chipbreaker

③ Applicable tool holders

For kyocera holder Replacement SX insert sheet with standard insert sheet is necessary.

Description	Applicable toolholder (kyocera corporation)	Standard sheet	SX sheet
	DCLNR/L2525M-12	DC-44	DC-44-C
	PCLNR/L2525M-12	LC-42N	LC-42N-C
CNMM1606XR/L-SX	PCLNR/L2525M-16 PCLNR/L3232P-16	LC-53N	LC-53N-C
CNMM1906XR/L-SX	PCLNR/L3232P-19	LC-63	LC-63-C

Standard shim

SX shim

■Caution of using SX Chipbreaker

④ Regarding un-machined part

Un-machined part at the corner is following,

Description	Cut off amount(mm)		
Description	Х	Z	
CNMM1204XR/L-SX	4.1	2.9	
CNMM1606XR/L-SX	4.8	3.3	
CNMM1906XR/L-SX	5.4	3.6	

■Caution of using SX chipbreaker

- (5) Facing
 - It is recommended for External machining, but facing is also possible. Center height positioned below the center (Boss remains in the work center)

Description	Maximum depth of cut (mm) ※Face	Amount below the center(mm)
CNMM1204XR/L-SX	2.0	0.40
CNMM1606XR/L-SX	2.0	0.45
CNMM1906XR/L-SX	2.5	0.65

■SQ chipbreaker features

 Special axial face design decreases cutting edge temperature
 Optimize design through simulation technology

Effects of SQ chipbreaker

- Decreasing cutting edge temperature \Rightarrow Tool life improvement
- Prevents burr \Rightarrow Tool life improvement, higher productivity

For semi-finishing of super-heat-resistant alloy, it is effective to improve tool life and productivity.

Inclination cutting edge
 Forward tilt in a negative direction (Patent pending)
 Effective for reducing burr and notching.

SQ chipbreaker features

(1) Decrease cutting edge temperature \Rightarrow improve tool life.

(2) Prevents burr \Rightarrow Tool life improvement, higher productivity

SQ chipbreaker

Conventional products

Ni based-heat resistance alloy, Vc = 40m/min, aps = 1.0mm, f = 0.15mm/rev

Cutting edge temperature comparison (simulation)

Unique cutting edge design reduces cutting edge temperature. \Rightarrow Improve tool life and machining efficiency for semi-finishing.

■SQ chipbreaker evaluation

Work: Inconel(r) 718(material equivalent) AM S 5663, Holder: DCLNL2525 M-12 Insert: CNMG120408type, Conditions: Vc = 40m/min, aps = 1.0mm, f = 0.20mm/rev

SQ chipbreaker reduces notching.

■Line Up

Description	Grade	
	PR005S	PR015S
CNMG120404SQ	\bullet	lacksquare
CNMG120408SQ	•	
CNMG120412SQ	•	
CNMG160612SQ	•	
CNMG160616SQ	•	
CNMG190612SQ	•	
CNMG190616SQ		
DNMG150404SQ		
DNMG150408SQ	•	
DNMG150412SQ		
DNMG150604SQ		
DNMG150608SQ		
DNMG150612SQ		

Description	Grade	
	PR005S	PR015S
CNMM1204XR-SX		
CNMM1204XL-SX		
CNMM1606XR-SX		
CNMM1606XL-SX		
CNMM1906XR-SX		
CNMM1906XL-SX		

PR005S/ PR015S

New Grade for Heat-resistant Alloys PR005S/PR015S

 \rightarrow Improve toughness and prevent notch-wear and realize stable machining

New Developed Substrate

-PR005S

 \rightarrow High hardness grade for high speed machining

-PR015S

 \rightarrow Excellent wear resistance and stability

Property of PVD coating

- Adopted "MEGACOAT HARD"
 - \rightarrow High hardness and excellent heat resistance
 - → Reduce boundary damage by Improving thermal stability
PR005S/ PR015S

■ PR005S/PR015S

→New developed substrate carbide reduce sudden fracture and notch-wear

(1) Improve thermal conductivity by optimum distribution of WC coarse grains
⇒ Prevent heat concentration on cutting edge

- (2) Improve high-temperature properties by addition and distribution of heat-resisting composition
 - \Rightarrow Prevent hardness deterioration by heat-oxidation

PR005S/ PR015S

Product Summary

Positive wiper WP breaker Addition L/R hand (D type, T type)

Advantage of L/R hand

■ Repertoire

Shana	Description	Grade			
Shape	Description	PR1425	TN620	PV720	
	DCMX 070204R-WP				
	070204L-WP				
	DCMX 11T304R-WP				
	11T304L-WP				
	TPMX 110304R-WP				
	110304L-WP				

■L/R hand WP breaker holder matching list

Insert	Арр	Tool holder	Conformance		Insert	Арр	Tool holder	Conformance
DCMX07/11	ID	A-SDUC-AE S-SDUC-A E-SDUC-A	O *1		DCMX07/11		ADJC-FF SDJC-FF SDJC	O *2
		A-SDUC11					S-SDUC	O *1
		S-SDZC-A E-SDZC-A	O *2			OD	SDLC-FF	∆ Note *2
		A-SDQC-AE S-SDQC-A	×				S-SDLC	∆ Note *1
Conformance cutting edge angle							SDXC SDNC-F SDNC	×
DCMX07/11 93° TPMX11 95° *1 Left hand(L) insert for right hand(R) tool holder.						ID	A-STLP-AE S-STLP-A E-STLP-A	O *1
Right hand(R) insert for left hand(L) tool holder *2 Right hand(R) insert for right hand(R) tool holder, Left hand(L) insert for left hand(L) tool holder				TPMX11	S-ST WP-E S-STWP		×	
					OD	STGP	×	

Note:

SDLC-FF and S-SDLC tool holder with wiper insert improve surface roughness than standard insert, but wiper insert original performance is not utilized.

Tools offset cancellation

L/R hand WP need for edge position corrections as well as WP without hand (compensation value is different from the without hand type)

Program corrections(Ramping cutting)

Ramping angle 0	0°	5°	10°	15°	20°	25°
Z direction compensation value(mm) D Type	0	-0.22	-0.24	-0.24	-0.25	-0.25
Z direction compensation value(mm) T Type	0	-0.24	-0.24	-0.25	-0.24	-

New Insert Grade for TF Breaker

New Grade for TF breaker

Same as TQ breaker : PR1215, PR1515, PR1535 are available Steel : PR1215 SUS : PR1515, PR1535 (Stable machining)

TQ breaker Line-up expansion

Expanding as Same as TF breaker Line-up

TF Breaker line-up expansion

New Insert Grade for TF Breaker

TF Breaker line-up expansion

New Insert Grade for TF Breaker

TQ & TF Breaker line-up expansion

■ TQ breaker Line-up

*Same as TF breaker Line-up

Metric		U	N	W	BSPT	
16ER100ISO	11IR100ISO	16ER24UN	16IR24UN	16ER19W	16ER28BSPT	
16ER125ISO	11IR125SIO	16ER20UN	16IR20UN	16ER16W	16ER19BSPT	
16ER150ISO	11IR150ISO	16ER18UN	16IR18UN	16ER14W	16ER14BSPT	
16ER175ISO	11IR175ISO	16ER16UN	16IR16UN	16ER11W	16ER11BSPT	
16ER200ISO	16IR100ISO	16ER14UN	16IR14UN	16IR19W	11IR28BSPT	
16ER250ISO	16IR125ISO	16ER13UN	16IR13UN	16IR16W	11IR19BSPT	
16ER300ISO	16IR150ISO	16ER12UN	16IR12UN	16IR14W	11IR14BSPT	
	16IR175ISO	16ER10UN	16IR10UN	16IR11W	16ER14BSPT	
	16IR200ISO	16ER08UN	16IR08UN		16ER11BSPT	
	16IR250ISO	Std 60°	Std 55°	1		
	16IR300ISO	16ERA60	16ERA55	: New Line-up		
		16ERG60	16ERG55			
		16ERAG60	16ERAG55	23 items→59 Items		

PR1535 Turning New Line-up Grade Description Type **Expansion** CCMT09T304MQ CCMT09T308MQ DCMT070202MQ New 14 Items Positive DCMT070204MQ (Positive : 7 items) DCMT11T302MQ (Negative : 7 items) DCMT11T304MQ DCMT11T308MQ PR1535 VNMG160404MQ VNMG160404MS VNMG160404MU Negative VNMG160408MQ VNMG160408MS VNMG160408MU VNMG160412MS

Diamond Insert for **MEC**

MEC Series BDGT type New line-up

Total 12 Items (KPD001 : 6 Items) (KPD230 : 6 Items) ※LE : Long Edge type

Description	Grade			
Description	KPD001	KPD230		
BDGT11T302FR				
BDGT11T302FR-LE				
BDGT11T304FR				
BDGT11T304FR-LE				
BDGT11T308FR				
BDGT11T308FR-LE				

